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Abstract
Many researchers have noted that the functional architecture of the human brain is relatively
invariant during task performance and the resting state. Indeed, intrinsic connectivity networks
(ICNs) revealed by resting-state functional connectivity analyses are spatially similar to regions
activated during cognitive tasks. This suggests that patterns of task-related activation in individual
subjects may result from the engagement of one or more of these ICNs; however, this has not been
tested. We used a novel analysis, spatial multiple regression, to test whether the patterns of
activation during an N-back working memory task could be well described by a linear
combination of ICNs delineated using Independent Components Analysis at rest. We found that
across subjects, the cingulo-opercular Set Maintenance ICN, as well as right and left
Frontoparietal Control ICNs, were reliably activated during working memory, while Default Mode
and Visual ICNs were reliably deactivated. Further, involvement of Set Maintenance,
Frontoparietal Control, and Dorsal Attention ICNs was sensitive to varying working memory load.
Finally, the degree of left Frontoparietal Control network activation predicted response speed,
while activation in both left Frontoparietal Control and Dorsal Attention networks predicted task
accuracy. These results suggest that a close relationship between resting-state networks and task-
evoked activation is functionally relevant for behavior, and that spatial multiple regression
analysis is a suitable method for revealing that relationship.
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INTRODUCTION
Functional magnetic resonance imaging (fMRI) studies of the human brain in a resting state
(that is, while subjects are not engaged in a directed task) have demonstrated that
spontaneous fluctuations in activity within various distinct regions exhibit a strong temporal
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correlation, suggesting that the correlated regions form a functional network [Biswal et al.,
1995]. Several such functional networks have been identified [Beckmann et al., 2005; De
Luca et al., 2006], and these networks are spatially consistent across subjects and across
testing sessions [Chen et al., 2008; Meindl et al., 2009; Shehzad et al., 2009; Van Dijk et al.,
2010]. These networks, termed “intrinsic connectivity networks” (ICNs) [Seeley et al.,
2007] have been posited to represent a fundamental functional organization of the brain [Fox
and Raichle, 2007]. However, the extent to which this functional network architecture may
be relevant to cognition is an open question.

It is well established that there is close correspondence between the spatial composition of
ICNs and sets of regions engaged by specific cognitive processes. For example, the Default
Mode network is one well-studied ICN comprising the ventral and anterior medial prefrontal
cortex, the precuneus/posterior cingulate cortex, and bilateral angular gyrus [Buckner et al.,
2008]. These same regions are also reliably activated during self-referential processing, such
as autobiographical memory and theory of mind tasks [Spreng et al., 2009], and reliably
deactivated during performance of tasks requiring a focus on external stimuli rather than on
the self [Raichle et al., 2001]. The close correspondence between the spatial extent of the
functional connectivity pattern identified during the resting state and the activation/
deactivation pattern during task-evoked states suggests that the Default Mode ICN is being
engaged or suppressed by task demands. This observation—that an entire ICN may be
engaged or suppressed by some task demands—appears to hold true not just for the Default
Mode network, but also for other ICNs. Spatial similarities between task activation and
resting connectivity have similarly been observed in motor [Biswal et al., 1995], visual
[Lowe et al., 1998], and higher-order executive control regions [Fransson, 2006]. In a formal
analysis of this effect, a close spatial correspondence between ICNs and task-evoked
activation patterns was demonstrated between resting-state ICNs identified in a relatively
small group of subjects and task-related activation peaks reported in more than 7,000 fMRI
studies using a variety of tasks [Smith et al., 2009]. Such evidence supports the notion that
ICNs are functionally specialized to subserve discrete cognitive processes. Specific
networks have been identified as serving sensory functions, such as a Visual network, an
Auditory network, and a Somatosensory network [Beckmann et al., 2005], while others
serve higher functions, such as a Frontoparietal Executive Control network and a cingulo-
opercular Set Maintenance network [Dosenbach et al., 2007]. This suggests that specific
regions may tend to activate together in the same tasks because they are intrinsically linked
into a coherent network specialized for discrete forms of information processing.

Complex cognitive functions that involve multiple forms of information processing are
likely to draw upon multiple ICNs, each contributing a distinct cognitive process. One
complex cognitive function is the short-term maintenance and manipulation of information
in the face of distracting stimuli, commonly referred to as working memory. Working
memory is often measured by the N-back task, in which subjects see a continuous sequence
of stimuli and are required to press a button whenever a stimulus matches a stimulus they
saw n trials ago. This task draws upon several cognitive processes, including visual attention
and monitoring of presented stimuli, maintenance of target information in working memory,
identification and orienting toward targets when they appear, constant updating of new
target information, and suppression of previously relevant but currently irrelevant targets
[Owen et al., 2005]. These cognitive processes are likely subserved by brain regions
comprising multiple ICNs, rather than by a single ICN. Indeed, the regions activated during
N-back performance, which include dorsal anterior cingulate cortex, dorsolateral and
ventrolateral prefrontal cortex, and inferior parietal lobule [D’Esposito et al., 1998; Owen et
al., 2005], are part of two ICNs, the Frontoparietal Control network and the Set Maintenance
network. Further, activation within these regions, particularly in the frontal lobe, is known to
scale with the “n” or working memory load of the N-back task [Braver et al., 1997;

Gordon et al. Page 2

Hum Brain Mapp. Author manuscript; available in PMC 2012 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Manoach et al., 1997]. However, no previous study has tested ICN engagement during the
task-evoked state in individual subjects by examining the extent to which the spatial pattern
of activation matches ICNs identified in the resting state.

The nature and extent of ICN engagement is known to predict individual differences in
cognition. In healthy subjects scanned at rest, there is some variability in the spatial extent
and connectivity strength of these networks [Damoiseaux et al., 2006; Mennes et al., 2010].
There is also variability in task-evoked functional connectivity strength [Hampson et al.,
2006] and the activation/suppression of regions within these networks [Eichele et al., 2008;
Weissman et al., 2006]. In some networks, this individual variability is associated with
differences in performance, as lower Default Mode network suppression and weaker
functional connectivity was associated with more errors and slower performance [Eichele et
al., 2008; Hampson et al., 2006; Weissman et al., 2006]. Further, altered activation/
suppression and connectivity of several networks has been linked to neuropsychological
disorders such as Attention Deficit-Hyperactivity Disorder [Cao et al., 2006; Castellanos et
al., 2008; Fassbender et al., 2009; Uddin et al., 2008], Autism Spectrum Disorders [Kennedy
and Courchesne, 2008; Kennedy et al., 2006], Schizophrenia [Bluhm et al., 2007; Calhoun et
al., 2008; Whitfield-Gabrieli et al., 2009], and Alzheimer’s disease [Greicius et al., 2004;
Rombouts et al., 2005; Wermke et al., 2008], all of which include symptoms with some
form of cognitive impairment. Thus, both normal variation in ICN engagement among
healthy subjects and pathological variation among disordered populations are predictive of
behavior. Together, this evidence suggests that engagement of ICNs during working
memory performance ought to be associated with differences in task performance across
individuals.

To summarize, close spatial correspondence between the ICNs observed during rest and the
activation patterns observed during tasks suggests that complex cognitive processing may be
conceptualized as activation of multiple ICNs delineated during the resting state. This
possibility has not been formally tested within individual subjects. In the present study, we
tested the hypothesis that a given subject’s pattern of brain activation during working
memory corresponds to the engagement of multiple ICNs, which are detected in that subject
using functional connectivity analyses at rest. Furthermore, we hypothesized that the degree
of network engagement will change as working memory load increases, and that the degree
of network engagement will predict performance. Healthy young adults underwent fMRI
during the resting state and during performance of an N-back task with three levels of
working memory load. We used a novel spatial multiple regression technique to compare the
spatial extent of activation patterns observed in individual subjects during the N-back task
with subject-level networks derived from an Independent Components Analysis (ICA) of the
resting-state data. This technique allows unbiased, hypothesis-free comparisons of task-
related activation patterns with all ICNs in the brain. We predicted the following: first,
patterns of N-back-evoked activation would be spatially similar to subjects’ ICNs,
specifically those ICNs comprising regions known to mediate working memory and
cognitive control processes, such as the Frontoparietal Control network and the cingulo-
opercular Set Maintenance network. Second, the patterns of deactivation observed would be
similar to the Default Mode network observed in those subjects. These results would
demonstrate for the first time that individual variability in the shape of ICNs detected at rest
is reflected in the variability in activation patterns observed during tasks. Third, as regions
within the Frontoparietal Control, cingulo-opercular Set Maintenance, and Default Mode
networks are known to be sensitive to working memory load [Braver et al., 1997;
McKiernan et al., 2003] and cognitive performance [Perlstein et al., 2003; Weissman et al.,
2006], we predicted that the degree of engagement of these networks would be altered by
increasing working memory loads and would predict behavioral performance.
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MATERIALS AND METHODS
Participants

Forty-four Georgetown University undergraduates (25 female) ages 18 to 22 years (mean ±
SD = 19.22 ± 1.17) participated in the study for payment. Informed consent procedures were
carried out according to Georgetown University’s Institutional Review Board guidelines.
Exclusion criteria included (1) self-reported use of psychotropic medication (e.g.,
stimulants, anti-anxiety/depression); (2) self-reported history of neurological injury or
disease, seizure disorder, psychiatric diagnosis; (3) contraindications for MRI—e.g., metal
implants in the body, dental work involving metal, pregnancy. Four subjects were excluded
from analysis due to technical problems during the resting-state scanning session.

MRI Scanning Protocol
N-back task—Subjects were scanned during performance of the N-back task, in which
nine 30 s blocks of task (three blocks each with 1-, 2-, and 3-back trials) alternated with
eight 15 s blocks of fixation, lasting for 6:26 min in total. Each N-back block consisted of
nine serially presented consonants appearing for 500 ms, with an intertrial interval of 2,500
ms. The N-back load condition (1-, 2-, or 3-back) varied between task blocks, with condition
order pseudorandomized using a modified Latin Square. Each block was preceded by a
3,000 ms screen informing the subject of the condition. Subjects were instructed that, in
each N-back condition, they should press a right-hand-held button when the current letter
matched the letter n trials ago. Targets were present on 19% of trials; each block contained
between one and three targets with target frequency balanced across conditions. No
condition contained sequences of stimuli that were appropriate as targets in any other
condition. To eliminate learning effects during the scanning session, all subjects had been
previously exposed to a variant of the same N-back task with different stimulus sequences.
Stimuli were presented using E-Prime software (Psychology Software Tools Inc., Pittsburg,
PA).

Rest—Subjects were scanned for 5:04 min while lying awake with eyes closed. Subjects
were told to relax and to not think of anything in particular.

Image acquisition—All images were acquired on a 3.0T MRI Siemens Trio system. For
each subject, a high resolution structural scan (MPRAGE) was acquired, followed by
functional imaging during the N-back task, followed by functional imaging during the
resting state. The scan parameters were as follows: Structural—a T1-weighted MPRAGE
scan was acquired with the following parameters: TR/TE = 2,300/2.94 ms, TI = 900 ms, 90
degree flip angle, 1 slab, 160 sagittal slices with a 1.0 mm thickness, FOV = 256 × 256
mm2, matrix = 256 ×256, resulting in an effective resolution of 1.03 mm isotropic voxels.
N-back—193 whole-brain images were acquired using a gradient echo pulse sequence (34
slices, TR = 2,000 ms, TE = 30 ms, 256 × 256 mm FOV, 90 degree flip angle, voxel
dimensions 4 × 4 × 4.2 mm). Rest—150 whole-brain images were acquired using a gradient
echo pulse sequence (37 slices, TR = 2,000 ms, TE = 30 ms, 192 × 192 mm FOV, 90 degree
flip angle, voxel dimensions 3 mm isotropic).

Data Analysis
Preprocessing—The first two images were discarded from both fMRI runs to allow for
signal stabilization. The remaining images were processed in SPM5 (Wellcome Department
of Cognitive Neurology, London, UK) implemented in MATLAB (Version 7.0 Mathworks,
Inc., Sherborn, MA). For both the Rest and N-back sessions, images were corrected for
translational and rotational motion by realigning to the first image of the session. Exclusion
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criteria for excessive motion was set at 3 mm of translation (1 voxel width) in any
orthogonal direction or 1° rotation around any one axis. All timepoints in all subjects were
found to be below these criteria (actual range: all translation <1.2 mm; all rotation <1°).
Images were then corrected for slice acquisition timing and were coregistered with the high-
resolution structural images. The structural images were segmented into separate gray and
white matter images, and the gray matter image was normalized into standard MNI space by
comparison with a template gray matter image. The normalization parameters used were
then applied to the functional images to bring them into MNI space. All images were
smoothed using a Gaussian kernel with full-width at half-maximum (FWHM) of 8 mm.

Following preprocessing, the following analysis were performed (as illustrated in Fig. 1).

Regions activated and deactivated during N-back task—First-level analysis was
performed using a general linear model as implemented in SPM5. For each subject, four
temporal regressors were specified, each one consisting of a boxcar timeseries convolved
with a hemodynamic response function. The regressors represented the time-courses of the
1-back, 2-back, 3-back, and fixation conditions. For each subject, four contrasts were
specified: Task > Fixation, representing the regions activated by the average of the three N-
back conditions; and 3-back > Fixation, 2-back > Fixation, and 1-back > Fixation,
representing regions activated for each load condition.

Group-level ICNs—In order to delineate ICNs present in the group, the 150 time points of
preprocessed resting data from each subject were temporally concatenated across subjects to
create a single data set. An Independent Components Analysis (ICA) was performed on this
dataset using the MELODIC toolbox [Beckmann and Smith, 2004] implemented within FSL
(Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford,
London, UK). This ICA algorithm was preset to specify 20 independent components, as this
number of components has been shown to divide the brain into recognizable networks
[Abou-Elseoud et al., 2010]. The ICA thus delineated 20 components in the form of 20
three-dimensional Z-score images, in which the Z-score in each voxel represents the degree
of covariation with the rest of the network. Group-level components in which the areas of
maximal covariation were non-neuronal (e.g., white matter, cerebrospinal fluid, brain edge
covariation resulting from head motion) were visually identified and removed from further
analysis. The remaining group components were visually inspected for similarities to known
brain networks.

Subject-level ICNs—In order to discover coherent networks within each subject’s brain,
ICA was performed on each subject’s preprocessed resting data, with the algorithm again
preset to return 20 independent components. The resulting components represented the
networks detectable in each subject’s brain.

A Fourier transform of the average time-course within each of these subject-level networks
was conducted to determine the frequencies present in that network. As neuronally based
ICNs are known to oscillate at frequencies between 0.01 and 0.1 Hz [Biswal et al., 1995],
we considered any detected network which contained more than 50% of its total signal
energy in a range above 0.1 Hz to be an artifactual network. Such networks were removed
from further analysis.

Each of these subject-level networks delineated by the ICA analysis was presumed to be that
subject’s version of one of the ICNs identified at the group level. To identify which group-
level network best matched each subject-level network, all unthresholded (whole-brain
image) subject-level networks were spatially correlated against all unthresholded group-
level networks, separately for each subject. The spatial correlation procedure involved using
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MARS-BAR [Brett et al., 2003] to extract the Z-scores of the subject-level network within
every voxel in the brain, and then reshaping the three-dimensional matrix of voxel values
into a one-dimensional vector. This extraction was then repeated for the group-level
network, and a Pearson’s correlation was computed between the subject-level network
vector of Z-scores and the group network vector of Z-scores. The resulting r value represents
the square root of the percent of variance in the spatial pattern of Z-scores from the
individual subject network that can be explained by the spatial pattern of the group-level
network. In order to identify each individual subject network as a version of a group-level
network, the subject-level network was spatially correlated against all group-level networks;
the group-level network with the most positive r value was the group network which
explained the highest percentage of the variance in the individual network. This group
network was considered the best spatial match for that individual network, and the
individual network was thus considered that subject’s version of that group network.
Individual networks which did not match any group-level network with an r value of greater
than 0.1 were considered to have no group-level equivalent. Such networks with no group-
level match were not included in later analyses. This relatively liberal threshold of r = 0.1
was used in order to preserve individual variability in network shape.

This analysis allowed comparison of different ICA-delineated networks across different
subjects (i.e., subject-level networks from two subjects which matched the same group-level
network could be treated as the “same” network in each subject).

ICNs engaged during N-back task performance—In order to test the hypothesis that
each individual’s task activation map can be expressed as a combination of that subject’s
ICNs identified during rest, we conducted a spatial multiple regression to explain the spatial
pattern of each subject’s unthresholded task-activation map as a linear combination of all of
that subject’s unthresholded ICA-derived ICN maps. As in the spatial correlation procedure
described earlier, the Z-scores of each individual subject network were extracted within
every voxel in the brain and the three-dimensional matrix of voxel values was reshaped into
a one-dimensional vector. These vectors were used as regressors against a similarly reshaped
vector of the values within the previously calculated Task > Fixation contrast map. Notably,
only valid individual-level networks (as determined by the spatial correlation procedure
above) were entered as regressors. Thus, different subjects could have different numbers of
regressors. However, this variability did not affect subsequent results (see Supp. Info.).

This analysis returned an r2 value for each subject, reflecting the degree to which that
subject’s spatial pattern of task activation can be explained as a combination of ICNs. The
analysis also returned a (β) value for each network in each subject, reflecting the degree to
which the spatial pattern of that particular ICN explained the spatial pattern of task
activation—in other words, the degree to which that network was active during the N-back
task for that subject. To identify which networks were reliably activated during the N-back
task across subjects, one-sample t-tests (testing against the null hypothesis of (β) = 0) were
conducted for the beta values in each network, and the results were Bonferroni-corrected for
the number of t-tests conducted.

Effect of working memory load on ICN activation—To test the prediction that
networks important for task performance would be more likely to be activated at higher
loads, we repeated the same methods detailed above for each load condition. Thus, spatial
multiple regression was used to compare subject-level ICNs with the individual subject’s 1-
back > Fixation, 2-back > Fixation, and 3-back > Fixation contrasts. To examine the effect
of load on each network, that network’s (β) values (activation) from each subject were
analyzed with a repeated measures one-way ANOVA, with condition (1-back, 2-back, 3-
back) as the within-subjects factor. The critical significance value for the effect of load was
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determined by Bonferroni-correction for the total number of networks analyzed (and
therefore, ANOVAs conducted). For networks with significant load effects, post hoc t-tests
were conducted to determine the direction of load modulation.

Comparison of ICN activation to task performance—We hypothesized that
individual variability in the degree to which ICNs were activated by the n-back task would
predict task performance. Both mean reaction time (RT) for correct target responses and
percent accuracy (correct targets minus false alarms) were computed for each subject across
all load conditions. To test for effects of network activation on RT, a multiple regression
was performed with the beta values for each ICN entered as regressors. As accuracy was at
or near ceiling in all conditions, we computed a categorical measure for accuracy by
classifying each subject as either performing perfectly across all conditions, or as having
committed at least one error in the experiment. To test for effects of network activation on
accuracy, a binary logistic multiple regression was performed with the calculated (β) values
entered as regressors testing for effects on accuracy (perfect/not perfect). In these
regressions, if a subject had no subject-level ICN matching a given group-level ICN above
the threshold of r > 0.1, a (β) value of 0 was used for that network in that subject.

RESULTS
Behavior

A repeated-measures one-way ANOVA testing for load effects on percent accuracy showed
a main effect of load, F(2,38) = 13.59, P < 0.001. Pairwise contrasts indicated that mean
accuracy in the 1-back (99.4% ± 2.8%) and 2-back (99.8% ± 1.0%) conditions were near
ceiling and did not differ, but both were performed more accurately than the 3-back
condition (85.3% ± 19.5%), P < 0.001. However, the 3-back condition was also performed
near ceiling level in some subjects, as 22 of the 40 subjects had 100% accuracy in the 3-back
condition. Over all task conditions, twenty subjects had 100% accuracy, while 20 subjects
made one or more mistakes.

A repeated measures one-way ANOVA on response times (mean ± SD) showed a main
effect of load, F(2,38) = 15.14, P < 0.001. Pairwise contrasts indicated that the 1-back task
(518 ± 150 ms) was performed faster than the 2-back task (575 ± 174 ms), t(39) = 2.24, P <
0.05; and the 2-back task was performed faster than the 3-back task (684 ± 268 ms), t(39) =
3.45, P = 0.001 (Fig. 2). Overall mean RTs did not differ between the subjects with perfect
accuracy and those with at least one error (P > 0.1), indicating that RTs were not being
driven by a speed-accuracy tradeoff (for further evidence see Supp. Info.).

Regions Activated and Deactivated During N-Back Task
Figure 3 displays N-back versus Fixation contrast maps for five representative subjects.
Visual examination of subjects’ N-back > Fixation contrast maps (thresholded at P < 0.01
for visualization purposes) suggested that most subjects activated a variety of frontal and
parietal regions, commonly including dorsal medial supplementary motor area extending
into dorsal anterior cingulate cortex, bilateral premotor cortex, bilateral middle frontal gyrus,
bilateral anterior insula, bilateral thalamus, bilateral inferior parietal lobule, and bilateral
middle and lateral cerebellum. This pattern of activation, in particular the medial and lateral
prefrontal clusters, as well as the lateral parietal clusters, is broadly consistent with those
reported in previous studies using the N-back task [D’Esposito et al., 1998; Owen et al.,
2005]. Examination of the reverse contrasts (Fixation > N-back) suggested that subjects
commonly deactivated posterior cingulate cortex extending into precuneus, cuneus, and
retrosplenial cortex; ventral medial prefrontal cortex extending into anterior medial
prefrontal cortex; bilateral posterior insula; bilateral angular gyrus; and bilateral ventral and
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medial temporal cortex including hippocampus, parahippocampal gyrus, and fusiform gyrus.
This pattern of deactivation, in particular the posterior cingulate, ventral medial prefrontal,
and angular gyrus clusters, is broadly consistent with the “Default Mode network,” a set of
brain regions which consistently deactivates compared to baseline conditions across many
tasks [Raichle et al., 2001]. These activation/deactivation patterns were also observed at the
group level (see Supp. Info., Fig. S1).

Group-Level ICNs
ICA of all subjects’ concatenated rest datasets delineated 20 spatial networks of coherent
activity. Nine networks were identified as deriving from non-neuronal sources: two from
CSF, three from eyeball movement, and four from subject head motion. The remaining 11
networks (Fig. 4; Table I) were labeled based upon visual similarity to past reports. These
networks included: a cingulo-opercular Set Maintenance network, a left-lateralized
Frontoparietal Control network, and a right-lateralized Frontoparietal Control network
[identified by Dosenbach et al., 2007; lateralization shown by Beckmann et al., 2005; Habas
et al., 2009; Kiviniemi et al., 2009; Smith et al., 2009; Stevens et al., 2009]; a posterior
Default Mode network and an anterior Default Mode network [identified by Greicius et al.,
2003; anterior-posterior split shown by numerous studies including Abou-Elseoud et al.,
2010; Smith et al., 2009; Uddin et al., 2009; Zuo et al., 2010]; a Dorsal Attention network
[Fox et al., 2006]; an Auditory network [Upadhyay et al., 2008]; a Visual network [De Luca
et al., 2006]; a Sensorimotor network [Biswal et al., 1995]; a Language network [Hampson
et al., 2002]; and a medial/lateral temporal cortex network which has not been well
described in previous literature, and which we tentatively name a Memory network.

Subject-Level ICNs
For each subject-level ICN delineated by the ICA procedure, spatial correlations were
conducted with every group-level ICN to determine the best individual-group matches; these
subject-level ICNs were labeled as that subject’s version of the group-level ICN. Across
subjects, valid subject-level ICN matches (i.e., above the threshold of r = 0.1) were found
for 91.8% of the group-level networks. Seventeen of 40 subjects had subject-level versions
of all 11 group-level ICNs; no subject had subject-level versions of fewer than eight group-
level ICNs (i.e., three missing ICNs). The average number of valid subject-level ICNs was
10.1 out of 11 (less than 1 missing). This low variability in regressor number suggests that
the number of ICNs present was unlikely to drive any systematic effects on the resulting (β)
values; and indeed, formal tests revealed no effect of the number of valid ICNs on
subsequent results (Supp. Info.).

Of valid group-individual network matches, the mean ± SD r value was 0.42 ± 0.17. Across
subjects, the networks with the lowest average r values were the Memory (0.24 ± 0.08) and
Sensorimotor (0.29 ± 0.12) networks; all other networks had average r values between 0.38
and 0.63. The Sensorimotor network was the network that most commonly had no valid
group-individual matches; it was present in 29 of 40 individuals (72.5%). All other networks
were present in at least 34 of 40 individuals (85%).

ICNs Engaged During N-Back Task Performance
For each subject, spatial multiple regressions were conducted evaluating the spatial pattern
of N-back activation as a linear combination of ICNs. The average r2 of these regressions
across subjects was 0.38 (SD = 0.12; range = 0.11–0.59). Thus, the linear combination of
ICNs explained on average 38% of the variance of the spatial pattern of task-evoked
activations.
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(β) values from this spatial multiple regression were calculated for each network in each
subject, reflecting the degree to which that network was activated (or deactivated, in the case
of a negative beta value) during the N-back task (see Fig. 5). A one-sample t-test of these
beta values was conducted across subjects for each of the 11 networks. Networks for which
beta values were significantly different than zero at P < 0.05 after Bonferroni correction for
the 11 t-tests (critical threshold: P < 0.0045) included the right Frontoparietal Control
network (mean ± SD = 0.14 ± 0.12), the cingulo-opercular Set Maintenance network (0.10 ±
0.12), the left Frontoparietal Control network (0.083 ± 0.14), all of which were significantly
activated, as well as the anterior Default Mode network (−0.15 ± 0.16), posterior Default
Mode network (−0.11 ± 0.13), and Visual network (−0.11 ± 0.13), which were significantly
deactivated. The Dorsal Attention network (0.049 ± 0.11, P = 0.006 uncorrected) and the
Memory network (−0.039 ± 0.099, P = 0.018 uncorrected) were also respectively activated
and deactivated, but did not survive correction for multiple comparisons.

Effect of Working Memory Load on ICN Activation
Three spatial multiple regressions were conducted to determine the degree to which the
networks were activated during the 1-back, 2-back, and 3-back conditions (see Fig. 6). For
each network, the resulting beta values for the three conditions were entered into a repeated-
measures one-way ANOVA testing for effects of load at P < 0.05 after Bonferroni correction
for 11 ANOVAs (critical threshold: P < 0.0045). Activation differed significantly among the
three levels of load for the Dorsal Attention network (F(2,38) = 6.83), the Set Maintenance
network (F(2,38) = 12.20), the left Frontoparietal Control network (F(2,38) = 19.80), and the
right Frontoparietal Control network (F(2,38) = 17.27). Effects of load were also observed in
the Visual network (F(2,38) = 5.20, P = 0.01 uncorrected), but this effect did not survive
correction for multiple ANOVA tests.

Post hoc t-tests for the networks modulated by load revealed that, for the Dorsal Attention
and both left and right Frontoparietal Control networks, activation was lower during the 1-
back than 2-back and 3-back conditions (all P < 0.005), but 2-back and 3-back conditions
did not differ (all P > 0.5). In contrast, the Set Maintenance network showed a graded
pattern of activation such that activation was lower during the 1-back than 2-back condition
(P = 0.057), which in turn was lower than activation in the 3-back condition (P = 0.014). We
further examined whether these four load-sensitive networks had activation greater than zero
in all three loads by conducting one-sample t-tests on the (β) values of each network in each
load condition. We found that the Dorsal Attention and left Frontoparietal Control networks
had activity greater than zero in 2-back and 3-back conditions (P < 0.005), but not in the 1-
back condition (P > 0.5). The Set Maintenance and right Frontoparietal Control networks
had activation greater than zero for all three loads (P < 0.005). This suggests that the Set
Maintenance and right Frontoparietal Control networks were active under all load
conditions, but that the Dorsal Attention and left Frontoparietal Control networks only
activated during the more difficult conditions.

Comparison of ICN Activation With Task Performance
The (β) values for each network from the spatial multiple regression analysis (across load)
were entered as regressors in a multiple regression testing for effects of network activation
on mean RT across all loads. Only activation of left Frontoparietal Control network
predicted RT significantly (P = 0.033). A post-hoc test showed that left Frontoparietal
Control network activation correlated negatively with RT (r(39) = −0.31, P = 0.053; Fig. 7),
such that subjects with greater left Frontoparietal Control network activation during the N-
back task had faster mean RT across all conditions. This effect was not due to any
systematic differences between subjects with and without 100% accuracy, as mean RT did
not differ between these groups, and the effect was still present at trend level if only
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perfectly-performing subjects were included (Supp. Info.). The (β) values for each network
were also entered as regressors in a binary logistic multiple regression testing for effects of
network activation on binary accuracy (perfect or not perfect). Greater activation of both the
Dorsal Attention network (B = 36.9, Wald = 5.44, P = 0.020) and the left Frontoparietal
Control network (B = 9.90, Wald = 4.09, P = 0.043) significantly predicted a greater
likelihood to have perfect accuracy across all conditions.

DISCUSSION
Using a novel spatial multiple regression technique, the present study found that the spatial
extent of selective intrinsic connectivity networks (ICN), characterized while subjects were
in the resting state, corresponded to their pattern of functional neural engagement during
working memory assessed by the N-back task. Of the 11 ICNs included, the patterns of
activation best matched the left and right Frontoparietal Control networks and the cingulo-
opercular Set Maintenance network, and the pattern of deactivation best matched the
anterior and posterior Default Mode networks and the Visual network. Furthermore, the
degree of network engagement increased at higher working memory loads, such that
increasing load from 1-back to 2-back increased activation of the Dorsal Attention, Set
Maintenance, and right and left Frontoparietal Control networks, and increasing the load
from 2-back to 3-back induced additional activation increases in the Set Maintenance
network only. Degree of network engagement was associated with performance, such that
increased activation of the left Frontoparietal Control and Dorsal Attention networks
predicted faster response speed and an increased chance of attaining 100% task accuracy.
Default mode network deactivation did not relate to performance. In sum, these results
confirm, within individual subjects, the close correspondence between functional
organization of resting and task-evoked states that has been previously reported across
studies [Smith et al., 2009]. Further, these results demonstrate that the degree of task-rest
correspondence in individuals is sensitive to cognitive load and performance variability.

Decomposition of the Functional Neural Architecture of Working Memory in Terms of
Intrinsic Connectivity Networks

The present findings extend current knowledge about similar functional organization
between resting and task-evoked states in two ways. First, strong spatial matches between
functional neural engagement and ICNs were observed at the individual subject level. In a
seminal study by Smith et al. [2009], spatial matches were evaluated at the group level
between activation patterns derived from multiple task-evoked studies and single ICNs
derived from a separate group of 36 subjects. The present results extend those findings to
individual subjects, from whom both the task-evoked activation/deactivation patterns and
the ICNs were derived. Second, while Smith et al. evaluated matches between task
activation patterns and single ICNs, the present findings demonstrate that the combination of
multiple ICNs explained a large amount of variance in the spatial distribution of activation
associated with working memory. A linear combination of ICNs explained between 11%
and 59% of the spatial pattern of task-evoked activation across subjects; the average across
all subjects was 38%. By comparison, Smith et al. demonstrated visually convincing spatial
correlation matches between task-evoked activation and resting networks in which the
resting network explained at least 6.3% of the task activation (r = 0.25), which was
considered a minimum threshold for a good spatial match. Thus, the task-rest spatial
matches in the present study were well above that minimum threshold. Together, our results
show that task-evoked states in individual subjects reflect the simultaneous engagement and
disengagement of not just one, but several of the ICNs detected at rest in the same subjects.

The pattern of activation and deactivation during N-back performance was largely consistent
with past reports, with one exception. Results showed that the bilateral Frontoparietal
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Control networks (including dorsolatreral pre-frontal cortex, ventrolateral prefrontal cortex,
and inferior parietal cortex) and the Set Maintenance network (including bilateral anterior
insula and dorsal anterior cingulate cortex) were consistently activated by the N-back task.
Networks deactivated by the task included the anterior Default Mode network (including
ventral and dorsal medial prefrontal cortex and posterior cingulate cortex) and the posterior
Default Mode network (including posterior cingulate cortex extending into precuneus and
retrosplenial cortex, ventromedial prefrontal cortex, and bilateral angular gyrus). This
regional composition of activation [D’Esposito et al., 1998; Owen et al., 2005] and
deactivation [McKiernan et al., 2003] is consistent with past studies using the N-back task.
An unexpected finding, however, was that deactivations included the Visual network
(including most of occipital cortex). Deactivation of visual regions appears contrary to task
demands of a visual N-back task. Examination of deactivated regions revealed by the
Fixation > N-back contrast showed that cuneus, lateral middle occipital cortex, and lateral
inferior occipital cortex were deactivated (Supp. Info., Fig. S2, yellow circles), but primary
visual cortex was not. Thus, only extrastriate portions of the Visual network that are
associated with higher-order visual processing were deactivated. Indeed, such processing is
unlikely to be evoked during perception of single letter stimuli used in the present task.

In sum, the present results extend past working memory findings by demonstrating that the
observed patterns of activation/deactivation can be decomposed in terms of temporally
segregated networks, ICNs, that are detected without task demands. However, while these
findings seem to suggest that the task evokes entire ICNs to a greater or lesser extent, it is
important to note that the present analysis cannot readily discriminate differential
engagement of smaller subunits of ICNs (as demonstrated by the partial deactivation of the
visual cortex). Indeed, whether or not a whole ICN is engaged is likely to depend on the
demands of specific tasks. This limitation of the analysis is further discussed below
(“Advantages and Limitations of Spatial Multiple Regression”).

Effect of Working Memory Load
The Set Maintenance and bilateral Frontoparietal Control ICNs that were engaged during N-
back performance were also sensitive to increased load. In addition, activation in the Dorsal
Attention network was sensitive to load, although this network was not significantly active
in the overall task. Post hoc analyses indicated that this network was indeed active during
the 2- and 3-back conditions, but not activated in the low-load 1-Back condition. Past
studies have demonstrated load-sensitivity of individual regions within the ICNs observed
here, such as prefrontal, parietal, and anterior cingulate regions [Braver et al., 1997;
Callicott et al., 1999; Veltman et al., 2003]. Dosenbach et al. [2007, 2008] have argued that
the Frontoparietal Control and Set Maintenance networks perform distinct cognitive control
operations, with the Frontoparietal Control network adapting to short-term variations in task
requirements and the Set Maintenance network maintaining longer-term task goals and
strategies. These cognitive functions are likely to be required at all loads, but to be engaged
more strongly in more difficult conditions than in easy conditions such as the 1-Back. The
Dorsal Attention network has been argued to control voluntary, top–down orienting of
attention and selection of behavior [Corbetta and Shulman, 2002], and specifically to be
involved in rehearsal during working memory [Corbetta et al., 2002]. Unlike the 2- and 3-
back conditions, the optimal strategy for performing the 1-back condition does not involve
rehearsing the target stimulus, which may explain why this network was not active during
the 1-back condition.

These four ICNs were differentially responsive to increased working memory demands. The
Set Maintenance network responded linearly to working memory load, such that activation
was greater during the 3-back condition than during 2-back, which in turn was greater than
during the 1-back condition. In contrast, Frontoparietal Control and Dorsal Attention
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networks responded to load in a “stepwise” function, such that activation was greater during
2 and 3-back than 1-back, but 2-back and 3-back activation did not differ. In previous
studies using a multiload N-back design, both uniformly linear [Braver et al., 1997; Veltman
et al., 2003] and mixed linear and stepwise [Callicott et al., 1999; Cohen et al., 1997;
Jonides et al., 1997] load-responses have been reported. Those studies reporting mixed
responses found stepwise responses within lateral prefrontal cortex [Callicott et al., 1999;
Cohen et al., 1997; Jonides et al., 1997], but linear responses within dorsal anterior cingulate
cortex [Callicott et al., 1999]. This pattern is similar to that observed here, as lateral
prefrontal cortex is part of the Frontoparietal Control network while dorsal anterior cingulate
is part of the Set Maintenance network.

Neither the Anterior nor the Posterior Default Mode network was modulated by load. By
contrast, McKiernan et al. [2003] demonstrated that deactivation in medial pre-frontal but
not in posterior Default Mode regions increased with increasing working memory load. It is
possible that the working memory task used by McKiernan et al. [2003] (an auditory
monitoring task) may be more sensitive in detecting load-related deactivation effects. In
addition, effects of load on performance also differed more substantially in the auditory
monitoring task than in the present study. Thus, both task and performance characteristics
may be important factors in determining deactivation effects.

Relationship With Performance
Of the seven ICNs comprising task-evoked activation and deactivation, only two were
associated with N-back performance. Increased activation of the left Frontoparietal Control
network predicted both faster reaction time and an increased probability of perfect
performance, while increased activation of the Dorsal Attention network predicted an
increased probability of perfect performance. Greater right-lateralized [Callicott et al., 2000;
Tan et al., 2006] and bilateral [Callicott et al., 1999] lateral prefrontal involvement has
previously been associated with superior performance on a spatial N-back paradigm. By
contrast, the specifically left-hemispheric involvement of the Fronto-parietal Control
network in our study likely reflects use of verbal processing required for N-back
performance with letter stimuli. While associations between N-back performance and
engagement of medial and superior parietal regions comprising the Dorsal Attention
network have not been reported in the literature, these regions have been associated with
information rehearsal during a delayed response working memory task [Corbetta et al.,
2002].

By contrast, no association was found between behavioral performance and activation of the
Set Maintenance or Default Mode networks. The Set Maintenance network is posited to
mediate maintenance of relatively stable information such as task goals [Dosenbach et al.,
2007, 2008] and has been associated with detection of stimuli which are salient to current
goals [Seeley et al., 2007]. Further, the anterior cingulate gyrus within this network has been
associated with monitoring for responses incompatible with current goals (errors) [Carter et
al., 1998]. Failure to deactivate the Default Mode network has previously been associated
with increased errors [Eichele et al., 2008] and slower reaction times [Weissman et al.,
2006] during cognitively demanding tasks, which has been interpreted as Default Mode-
related lapses of attention (though this has not been shown in working memory tasks). The
N-back task in the present study produced unusually high performance levels (50% of
subjects made no errors over the course of the task), suggesting that lapses of attention were
infrequent. Few lapses of attention and few errors may have reduced our ability to detect
associations with the Default Mode and Set Maintenance ICNs. Use of binary logistic
regression allowed detection of ICNs associated with perfect/imperfect performance, but this
analysis is still not as sensitive as a linear regression would be, which may explain why no
association was found between performance and Default Mode or Set Maintenance
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networks. These high performance levels may have limited our findings in other ways as
well. The high accuracy may have been due at least in part to subjects’ previous exposure to
the task, but it may also suggest that these subjects are not representative of the average
population in terms of intellectual ability and/or motivation. Further, our findings regarding
linear and step-wise effects of load should be considered in the context of this near-ceiling
performance. Specifically, it is possible that the nature of ICN engagement depends upon
subjects’ subjective experience of increased demands, which may be more challenging to a
lower performing sample than ours.

Advantages and Limitations of Spatial Multiple Regression
We employed a novel spatial multiple regression analysis in this study to compare ICNs
identified at rest to activation patterns observed during task. In this analysis, the
dimensionality of the brain is first reduced from many thousands of voxels to a few ICNs
using ICA, a well-established technique for delineating functional brain networks
[Beckmann and Smith, 2004], and then these networks are further examined during task-
evoked states. Conceptually, using spatial multiple regression involves viewing the task-
performing brain as a small collection of ICNs rather than as many thousands of voxels. As
the regions within ICNs have very strong intra-network functional connectivity [Seeley et
al., 2007], tasks that activate one part of an ICN will likely activate all parts of the ICN, such
that all voxels within an ICN will be activated in approximately the same way. Thus, it is
reasonable to conduct hypothesis testing in an ICN-wise fashion rather than in a voxel-wise
fashion. An advantage of this approach is that fewer statistical tests are conducted relative to
a voxel-wise analysis, which eliminates the need to use stringent corrections for multiple
comparisons that increase the likelihood of Type II errors. This advantage is well illustrated
in the present study. We tested for effects of network activation on response speed and
found that increased activity in the left Frontoparietal Control network significantly
predicted faster RT (see Fig. 7). For comparison, we conducted a post hoc whole-brain
voxelwise analysis using RT as a linear regressor. This analysis also showed clusters well
matching the left Frontoparietal Control network (in left dorsolateral prefrontal, ventrolateral
prefrontal, and inferior parietal cortex, as well as small clusters in right ventrolateral
prefrontal and inferior parietal cortex), but these clusters did not survive a correction for
multiple comparisons (Supp. Info., Figs. S3A and B).

The approach of conducting spatial multiple regression against task is based on observations
of group-level task-rest similarities [Fransson, 2006; Smith et al., 2009], and extends that
work to show similarities between task activation and multiple ICNs within individual
subjects. Other recent work has similarly demonstrated task-rest associations. Mennes et al.
[2010] used a voxel-matched regression method to demonstrate voxels in which task
activation was directly predicted by degree of functional connectivity. An advantage of that
technique is its ability to examine rest-task relationships in a voxelwise fashion, allowing for
direct comparisons of the strength of resting connectivity to task activation. This is not
possible with our proposed technique, which compares the shape of resting ICNs to task
activation. However, the voxel-matched regression technique is also somewhat limited by its
use of only two broad brain networks, the “task-positive” and “task-negative” networks.
Thus, the specificity of the obtained connectivity values may not be high in this technique,
as they represent connectivity with a broad conglomerate of ICNs.

Multiple regressions in the spatial domain have previously been employed to analyze ICA
data using the dual regression technique [Filippini et al., 2009]. Dual regression, which
involves spatially regressing group-level ICA components against an individual-level
functional session and then temporally regressing the resulting time-courses against that
functional session, allows the reconstruction of individual components without running ICA
on individuals. As such, it represents an alternative to the component-matching procedure
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we used to identify individual-level ICNs. While the dual regression technique has been
shown to have strong test-retest reliability [Zuo et al., 2010], it is as yet unclear how much
individual variability is lost by forcing the ICNs from individual subjects to conform to
group-level ICNs. Dual regression may thus increase consistency across subjects by
reducing individual variability. Importantly, the primary purpose of both the component
matching technique used here and the dual regression technique (as well as the back-
reconstruction method used in the GIFT software, http://icatb.sourceforge.net/) is to identify
individual versions of group components. Once this identification is performed, the spatial
multiple regression against task activation data detailed in this paper may be conducted
using the results of any of these techniques. Thus, the technique proposed in the present
study is a flexible tool to determine the specifics of task-rest similarities that can be
employed in concert with any component identification method.

Importantly, despite the advantages offered by spatial multiple regression analysis, this
technique is not suitable for testing hypotheses about sub-regions within ICNs. For example,
possible dissociations between frontal and parietal regions within the Frontoparietal Control
network cannot be identified in the present study because these regions were parceled into
the same ICN. The degree of network parcellation can be controlled, as a higher model order
ICA will divide the functional networks into smaller subnetworks [Abou-Elseoud et al.,
2010; Kiviniemi et al., 2009] and thus allow for more specificity in the spatial multiple
regression analysis. We used a model order of 20 in the present study because that model
order has been shown to return visually identifiable networks [Abou-Elseoud et al., 2010]
similar to those described using seed-based connectivity. However, the large scale of these
networks does prevent examination of sub-network effects in the present study. This
limitation is illustrated by our finding of deactivation in the Visual ICN during N-back
performance, which closer examination showed was limited to extrastriate regions, a subset
of the network (Supp. Info., Fig. S2). These subregional differences were not discerned by
the spatial multiple regression analysis because the ICA-generated Visual network included
both primary and secondary visual cortex. However, while increasing the ICA model order
would likely increase the specificity of testing, it would also increase the number of ICNs
statistically tested, and thus require more stringent correction. A logical next step in the
development of the spatial multiple regression technique would be to systematically
investigate how the number of ICNs delineated in the ICA procedure may affect the
specificity and post-correction power of the results. Such an investigation could conceivably
identify an “optimal” number of ICNs beyond which the increased spatial specificity does
not make up for the loss of power, and could be of great interest for the field.

CONCLUSION
We have demonstrated that a novel analysis, spatial multiple regression, is useful in
identifying network-level functional engagement during working memory. The left and right
Frontoparietal Control and Set Maintenance networks were activated during the N-back
task, while Default Mode and Visual networks were deactivated during the task. Further,
activated networks, in addition to the Dorsal Attention network, were sensitive to increased
working memory load. The degree of activation of the left Frontoparietal Control and Dorsal
Attention networks was associated with performance. The spatial multiple regression
approach compares task-states to multiple rest-state connectivity networks, and also allows
sensitive examination of relatively subtle effects on network activation by avoiding
correction for large numbers of statistical comparisons. In future work, this approach should
be promising for testing hypotheses about network-level differences between conditions or
populations. As functional disruptions in a number of disorders (e.g., Schizophrenia,
Attention Deficit-Hyperactivity Disorder, Autism Spectrum disorders, and Alzheimer’s
disease) are hypothesized to include abnormalities at the network level, rather than at the
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level of the individual voxel or brain region [Broyd et al., 2009], an approach which
examines functional activation at the network level may be substantially more sensitive to
differences between disordered populations and healthy controls than voxelwise analyses.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic diagram of spatial multiple regression analysis steps. (A) For each subject, N-
back > Fixation contrasts were computed using a General Linear Model (GLM) to generate
a spatial mask of N-back activation. (B) Independent Component Analysis (ICA) was
conducted for each subject, as well as for the entire group, to generate group-level and
subject-level intrinsic connectivity network (ICN) maps. Subject-level ICNs were identified
by spatially correlating with group-level ICNs. (C) For one subject, a spatial multiple
regression was conducted in which the spatial pattern of the N-back activation map
(dependent variable; from step A) was explained as a linear combination of subject-level
ICNs (independent regressors; from step B). Parameter estimates for each network were
obtained and fed into later analyses. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]
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Figure 2.
Mean ± SD reaction times (RTs) for the N-back task for three load conditions. RTs differed
significantly by load. *Differences at P < 0.05; **differences at P = 0.001.
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Figure 3.
N-back > Fixation (red-yellow) and Fixation > N-back (blue-green) contrasts from five
representative subjects, thresholded at P < 0.01 uncorrected for visualization purposes. Note
that the contrast maps were unthresholded when used in the later spatial multiple regression
analysis. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Figure 4.
Eleven ICNs delineated in the resting-state data by the ICA procedure. ICN maps are
thresholded at Z = 4.9, corresponding to a voxelwise probability of inclusion in the network
of 99.9%. Note that the ICN maps were unthresholded when used in the later spatial
multiple regression analysis. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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Figure 5.
Results of the spatial multiple regression analysis comparing subject-level ICNs with
subject-level Task > Fixation contrasts. The graph displays average (β) values across
subjects for every network. *Values were significantly different from zero (P < 0.05,
corrected for the number of networks).
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Figure 6.
Results of the spatial multiple regression analysis assessing effect of working memory load
by comparing subject-level ICNs with subject-level 1-Back > Fixation, 2-Back > Fixation,
and 3-Back > Fixation contrasts. The graph displays average (β) values across subjects for
11 networks included in the analysis, for each load. Significant effects of load were found in
Dorsal Attention, Set Maintenance, and Frontoparietal Control networks. Differences
between load conditions obtained from post hoc tests within those networks are indicated by
*P < 0.05 and †P = .057.
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Figure 7.
Correlation between spatial multiple regression (β) values from the left Frontoparietal
control network and reaction time.
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